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element edges (cf., for example, [4]), or a tensor product of
the one dimensional approximations along element edgesIn this paper we develop an exponentially fitted finite element

method for a singularly perturbed advection–diffusion problem with parallel to coordinate axes (cf., for example, [6]). The con-
a singular perturbation parameter «. This finite element method struction of genuine piecewise exponential basis functions
is based on a set of novel piecewise exponential basis functions on triangular meshes has been sought, but still remains anconstructed on unstructured triangular meshes. The basis functions

open problem except for some special cases (cf., for exam-can not be expressed explicitly, but the values of each of them and
ple [7]). Another progress on this is the divergence freeits associated flux at a point are determined by a set of two-point

boundary value problems which can be solved exactly. A method shape functions for the semiconductor device equations
for evaluating elements of the stiffness matrix is also proposed for proposed recently by Sacco, Gatti, and Gotusso (cf. [9]).
the case that « is small. Numerical results, presented to validate

In this paper we present an exponentially fitted Galerkinthe method, show that the method is stable for a large range of «.
finite element method based on a novel set of piecewiseIt is also shown by the numerical results that the rate of convergence

of the method in an energy norm is of order h1/2 when « is exponential basis functions constructed on an unstructured
small. Q 1997 Academic Press triangular mesh. At each point x in a solution domain, the

finite element subspace spanned by these basis functions
yields constant approximations to the flux projections onto

1. INTRODUCTION the directions from x to the vertices of the triangle con-
taining x, respectively. These basis functions do not haveThis paper deals with the numerical solution of a singu-
explicit analytical representations, but the point values oflarly perturbed advection–diffusion problem with a posi-
a basis function and its associated flux are determined bytive singular perturbation parameter « by a finite element
a set of two-point boundary value problems which can bemethod. The problem considered here can be regarded
solved exactly. Furthermore, each of the basis functions hasas a linear model for the incompressible Navier–Stokes
the same support as that of the corresponding conventionalmomentum equations. It is well known that solutions to
piecewise linear one, and the former contains the latter asthis kind of problem display sharp boundary layers when
a special case (that the coefficient of the advection term« ! 1 so that classic numerical methods often yield errone-
is zero). The rest of our paper is organized as follows.ous approximate solutions with spurious oscillations. To

The continuous problem and some preliminaries are de-overcome this difficulty upwind schemes are often used.
scribed in the next section. In Section 3 we construct theHowever this kind of method may give inaccurate results,
finite element space by deriving a set of the piecewiseespecially when « has the same magnitude as that of the
exponential basis functions. We also present a techniquemesh parameter h used (cf., for example, [2, 4]). An alter-
for the evaluation of the entries in the stiffness matrix fornative way to solve this problem is to use exponentially
the case that « is small. Numerical results are given infitted methods (based on the idea by Alan and Southwell
Section 4. The numerical results show that the method is[1]). One example is the exponentially fitted finite volume/
numerically stable for a large range of « and the rate ofelement method proposed in [5] and analyzed in [4] which
convergence of the method in the energy norm is of h1/2

is stable and has an accuracy of h1/2 order with respect
order when « ! 1.to a discrete, «-independent energy norm. An excellent

overview of these methods can be found in [8]. To our
best knowledge, most of the existing exponentially fitted 2. THE PROBLEM
methods for singularly perturbed advection–diffusion

Consider stationary, linear, advection–diffusion prob-equations in higher dimensions are essentially based on a
one-dimensional constant approximation to the flux along lems of the form
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2= ? («=u 2 au) 1 Gu 5 F in V, (2.1)

uu­V 5 uD, (2.2)

where V [ R2, ­V is the boundary of V, and « is a positive
parameter. This problem arises from many physical models
such as the the decoupled and linearized incompressible
Navier–Stokes momentum equations. In this case « repre-
sents 1/Re, where Re denotes the Reynolds number. With-
out loss of generality, we assume that uD 5 0. The case of
non-homogeneous boundary condition can be transformed FIG. 3.1. Notation associated with the triangle t.
into the homogeneous one by subtracting a known function
satisfying the boundary conditions. For simplicity we also
assume that ­V is polygonal. The flux f is defined as

3. THE FINITE ELEMENT METHOD

f 5 «=u 2 au.
In this section we propose a novel conforming finite

element for Problem 2.1.
In what follows L2(V) denotes the space of square inte- Let Th be a partition of V consisting of triangles having

grable functions with norm i?i0 and H1(V) the usual Sobo- diameters less than or equal to h. The set of vertices of Thlev space with norm i?i1. The inner product on L2(V) not on ­V is denoted hxijN
1 .

or on L2(V) :5 (L2(V))2 is denoted by (?, ?). We put Corresponding to the mesh Th, we now construct a space
H 1

0(V) 5 hv [ H1(V) : vu­V 5 0j. The set of functions which, Sh , H1
0(V) of dimension N using the basis functions

together with their first partial derivatives, are continuous hfijN
1 defined below. These basis functions are motivated

on V is denoted by C1(V). by the idea proposed by Sever [10] and a simpler case that
For the coefficient functions we assume that a [ a is irrotational and piecewise constant is discussed in [11].

C1(V) and that G, F [ L2(V). We also assume that a and Let t [ Th be a triangle with vertices xi, xj, and xk. For
G satisfy any point x [ t we use lm (m 5 i, j, k) to denote the

segment connecting xm and x, and use em :5 (em,1, em,2)
As= ? a 1 G $ 0 in V. (2.3) (m 5 i, j, k) to denote the unit vector from xm to x (cf.

Fig. 3.1). We now find fi (x) and its associated flux fi (x) :5
( fi,1(x), fi,2(x)) satisfyingThe variational problem corresponding to (2.1) and (2.2) is

PROBLEM 2.1. Find u [ H1
0(V) such that for all v [

H1
0(V) d

dem
( fi ? em) 5

d
dem

S«
dfi (z)

dem
2 amfi (z)D5 0 ;z [ lm,

A(u, v) 5 (F, v), (2.4) (3.1)

where A(?, ?) is a bilinear form on (H1
0(V))2 defined by and the boundary conditions

A(u, v) 5 («=u 2 au, =v) 1 (Gu, v). (2.5) fi (xm) 5 dim, fi (x),

Let i?iE be a functional on H1
0(V) defined by ivi2

E 5 where am 5 a(x) ? em, dim denotes the Kronecker delta and
«(=v, =v). Then, by the well-known Poincaré–Fridriches fi (x) is yet to be determined. For each x, the above two
inequality iviE is an energy norm on H1

0(V). Under the point boundary value problem yields constant approxima-
condition (2.3) it is possible to show that (cf., for exam- tions to the flux f along the segments lm (m 5 1, 2, 3) (i.e.,
ple, [4]) fi ? em is constant on lm). Since, in (3.1), am is independent

of z, we can solve (3.1) analytically to obtain
A(u, u) $ iui2

E ;u [ H1
0(V). (2.6)

fi (z) 5 H2C1/am 1 C2eamuz2xi u/«, am ? 0

C1 uz 2 xiu 1 C2, am 5 0
JThis implies that A(?, ?) is coercive on H1

0(V) and, thus,
by the Lax–Milgram lemma, Problem 2.1 has a unique
solution in H1

0(V). ;z [ lm, m 5 i, j, k,
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where C1 (5fi ? em) and C2 are two constants to be deter- D(x) is nonsingular, or det D(x) ? 0. Let sm 5 amulmu/«
(m 5 i, j, k). From (3.6) we have, by direct computation,mined and u?u denotes the Euclidean length. Using the

boundary conditions (3.2) we get, for m 5 i, j, k,

det D(x) 5 «[uliu uljuB(sk)(ej,1ei,2 2 ej,2ei,1)
fi,1em,1 1 fi,2em,2 5 fi ? em 5 C1

1 ulju ulkuB(si)(ek,1ej,2 2 ek,2ej,1)

1 ulku uliuB(sj)(ei,1ek,2 2 ei,2ek,1)]5
«

ulmu FB Samulmu
«

D fi (x) 2 B S2
amulmu

«
D dimG, (3.3)

5 2«[uliu uljuB(sk)ez ? (ei 3 ej)

where B(z) denotes the Bernoulli function defined by 1 ulju ulkuB(si)ez ? (ej 3 ek)

1 ulku uliuB(sj)ez ? (ek 3 ei)

B(z) 55
z

ez 2 1
, z ? 0,

1, z 5 0.

(3.4)
with ez 5 (0, 0, 1) the unit vector perpendicular to t. From
the orientations of ei, ej, ek, and ez (cf. Fig. 3.1) we see that
ez ? (ei 3 ej), ez ? (ej 3 ek) and ez ? (ek 3 ei) are all nonnega-

Now (3.3) defines three linear algebraic equations for the tive, and at least two of them are positive. Furthermore,
three unknowns fi (x), fi,1(x), and fi,2(x). These three equa- since B(?) is always positive and at least two of uliu, ulju and
tions can be written as follows: ulku are positive, we have det D(x) ? 0.

We now prove (3.7). When x 5 xi we have uliu 5 0, and
PROBLEM 3.1. Find fi and fi 5 ( fi,1, fi,2) such that for thus from the first equation in (3.5) we obtain fi(xi) 5 1.

any x [ t To prove the second part of (3.7), we note that ej 5 2ek

if x [ xj xk . Thus we have

D(x) 1
fi,1

fi,2

fi
25 1

2«B(2ai uliu/«)

0

0
2, (3.5) | uliuei,1 uliuei,2 2«B(2aiuliu/«)

uljuej,1 uljuej,2 0

ulkuek,1 ulkuek,2 0
|

where D(x) is a 3 3 3 matrix defined by

5 2«B(2aiuliu/«)ulj u ulku Uej,1 ej,2

ek,1 ek,2
U5 0,

D(x) 5 1
uliuei,1 uliuei,2 2«B(aiuliu/«)

uljuej,1 uljuej,2 2«B(ajulju/«)

ulkuek,1 ulkuek,2 2«B(akulku/«)
2. (3.6)

since ej is parallel to ek . So, applying the Cramer’s rule to
(3.5) and using the above we have fi 5 0 for all x [
xj xk .

Now we prove (3.8). Let f 5 fi 1 fj 1 fk and ( f1, f2) 5Any solution to Problem 3.1 defines the point values of
f 5 fi 1 fj 1 fk. We know that ( fi,1, fi,2, fi) satisfies (3.5).the function fi and its associated flux fi at x [ t. Similarly
Analogously, ( fj,1, fj,2, fj) and ( fk,1, fk,2, fk) also satisfywe can define functions fj and fk associated with xj and
(3.5) with the right-hand side vector replaced by (0,xk, respectively. The following theorem shows that Prob-
2«B(2sj), 0)T and (0, 0, 2«B(2sk))T, respectively. Sum-lem 3.1 is uniquely solvable for all x [ t, and that fi, fj,
ming the three linear systems we obtainand fk form a system of local basis functions on t.

THEOREM 3.1. Let t [ Th. Then, for any x [ t, there
exists a unique solution to Problem 3.1. Furthermore, we
have D(x) 5 1

f1

f2

f
25 1

2«B(2si)

2«B(2sj)

2«B(2sk)
2

fi (xi) 5 1, fi 5 0 ;x [ xj xk, (3.7)

fi 1 fi 1 fk 5 1, fi 1 fj 1 fk 5 2a ;x [ t, (3.8)
with D(x) the matrix defined in (3.6). We now verify that
f 5 1 and f 5 2a satisfy the above linear system. Fromwhere xj xk denotes the edge of t connecting xj and xk .
(3.4) it is easy to verify that B(2z) 5 ezB(z). Thus, substi-
tuting f 5 1 and f 5 2a into the left-hand side of theProof. To prove that Problem 3.1 is uniquely solvable

we need only to show that for any x [ t the system matrix above linear system we have, for m 5 i, j, k,
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We now put Sh 5 span hfijN
1 . From the above discussionulmu em ? (2a) 2 «B(sm) 5 2ulmuam 2 «

ulmuam/«
esm 2 1 we see Sh , C 0(V) > H1

0(V). Using this finite element
space Sh we define the following Bubnov–Galerkin
problem.5 2

esmulmuam

esm 2 1
PROBLEM 3.2. Find uh [ Sh such that for all v [ Sh

5 2«esmB(sm)

A(uh, vh) 5 (F, vh) (3.10)5 2«B(2sm).

with A(?, ?) the bilinear form on (H1
0(V))2 defined by (2.5).Thus we have proved (3.8).

Because Sh , H 1
0 (V), from (2.6) we haveFor each triangle having xi as a vertex, where xi Ó ­V,

we have defined a local function fi and its associated flux
A(vh, vh) $ ivhi2

E ;vh [ Sh;fi as above. These functions do not have explicit represen-
tations, but their values at each point are determined

i.e., A(?, ?) is coercive on Sh 3 Sh . Therefore, there existsuniquely by the linear system (3.5). Combining all the local
a unique solution to Problem 3.2.functions associated with xi we obtain a hat function fi

The stability and convergence of the method involvedefined on the union of all the triangles sharing xi, denoted
intensive mathematical analysis and are currently underby Vi. From Theorem 3.1. we see that this fi is unity at xi

development. In the present paper we concentrate on theand 0 on ­Vi. This hat function fi can then be extended
computation of the method. The numerical results in theto V by defining fi (x) 5 0 for all x [ V\Vi. Applying
next section show that the method is numerically stableCramer’s rule to (3.5) we see that in each triangle t, fi,
when « ! h and converges, in the energy norm, to thecan be expressed as a ratio of a function of am and ulmu
exact solution at the rate of h1/2 order.(m 5 i, j, k) and the determinant det(D). Since both the

Let uh 5 oN
j51 uj fj and vh 5 fi (i 5 1, 2, ..., N). Substitut-numerator and the denominator in the expression for fi

ing these into (3.10) we obtain a linear algebraic systemcontain only polynomials and exponentials of am and ulmu
of the form(m 5 i, j, k), fi is differentiable in t, because a [ C 1(V).

This implies that fi [ H 1(t). (In fact, fi [ H 1(t) if a [
(H 1(t))2.) If we can show that fi is continuous across inter- Bu 5 b,
element boundaries in Vi, then fi [ C 0(V) > H 1

0(V). Let
t1 and t2 be the two triangles sharing the edge xi xj, and let where u 5 (u1, u2, ..., uN)T, b is a known vector, and B :5
fi,1 and fi,2 are the local functions on t1 and t2 respectively (bij)N3N is an N 3 N unsymmetric matrix with
defined by (3.5). When x [ xi xj we have that (ej,1, ej,2) 5
2(ei,1, ei,2) (cf. Fig. 3.1). Thus multiplying the first equation bij 5 E

V
(«=fj 2 afj) ? =fi dx 5 E

V
fj ? =fi dx. (3.11)

in (3.5) by ulju and the second equation by uliu, and adding
the resulting equations up we have

We comment that =fi is not given explicitly in (3.5), but
it can be obtained from2[uljuB(si) 1 uliuB(sj)]fi,m 5 2uljuB(2si), m 5 1, 2, (3.9)

=fi 5 (( fi,1 1 ai fi)/«, ( fi,2 1 ai fi)/«),where sn 5 anln/« (n 5 i, j). So both fi,1 and fi,2 on xi xj

are determined by the above equation, and thus fi is con-
where ( fi,1 fi,2 fi) is the solution to (3.5). When « is small,tinuous across xi xj because a is continuous on V and B(z)
=fi is peaked along one side of a triangle, which makesis a continuous function.
the numerical evaluation of (3.11) difficult. To overcomeWe remark that when a ; 0, the basis function fi reduces
this difficulty, we observe that the variation of fi in anyto the standard piecewise linear basis function. Obviously
element t is much smaller than that of =fi. So we mayfi is a hat function on its support Vi. To visualize fi in a
approximate bij bytypical case, we choose Vi to be the unit square [0, 1] 3

[0, 1] consisting of four triangles formed by the four sides
and the two diagonals of the square. We then solve (3.5) bij P O

t[Th

fj (bt) ? E
t
=fi dx,

with a 5 (x 1 y, y) on each triangle. The results for « 5
0.5 and 0.1 are plotted in Fig. 3.2. From these plots we see
that fi 5 1 at the center and zero on the boundary of Vi, where bt denotes the barycenter of the element t. This is

equivalent to applying the one-point quadrature rule toas proved in Theorem 3.1. It is also seen that the hat
functions are continuous on Vi . the term fi . Now, integration by parts we get
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FIG. 3.2. Hat functions: (a) « 5 0.5; (b) « 5 0.1.

latter can be found, for example, in [3, p. 183].) All compu-bij P O
t[Th

fj (bt) ? E
­t

nfi ds. (3.12)
tations were carried out in double precision on a UNIX
workstation.

The test problem is chosen to be (cf. [5])Here ­t denotes the boundary of t and n the unit outward
normal vector of ­t. The line integral in (3.12) is easy to
evaluate numerically. This is because along each side of t, 2= ? («=u 2 au) 1 2u 5 F in V 5 (0, 1)2,
f reduces to a one-dimensional exponential hat function

u 5 0 on ­V,
determined by (3.9) (cf. Fig. 3.2).

with a 5 (1, 1) and the exact solution4. NUMERICAL EXPERIMENTS

To validate the method in the previous section, numeri- u 5 xy(1 2 e(x21)/«)(1 2 e(y21)/«).
cal experiments were performed. The implementation of
the previous method needs numerical integrations on both The right-hand side function is
segments and triangles. For all the numerical solutions
below we use the 2-point Gauss quadrature rule for all the

F 5 x(1 2 e(x21)/«)[1 1 e(y21)/« 1 y(1 2 e(y21)/«)]
line integrals in the right side of (3.12) and the 9-point
quadrature rule for all area integrals on triangles. (The 1 y(1 2 e(y21)/«)[1 1 e(x21)/« 1 x(1 2 e(x21)/«)].

FIG. 4.1. (a) The initial mesh. (b) The refined mesh with 2401 mesh nodes.
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TABLE I the midpoints of the edges. Thus we obtain a sequence of
meshes corresponding to the mesh parameters hhij6

1, whereComputed Rates of Convergence in Various Norms for
hk 5 hk21/2 (k 5 2, 3, 4, 5, 6). The initial mesh and theDifferent «
mesh corresponding to k 5 5 with 2401 mesh nodes are

« i?iE i?i0 i?iy,h shown in Fig. 4.1.
For each k 5 1, 2, 3, 4, 5 we define a rate of convergence

1 1.00 2.00 1.74
pk by1021 0.97 1.90 1.84

1022 0.71 1.15 0.70
1023 0.55 0.64 20.17

pk 5 log2

iuhk
2 uiE

iuhk11
2 uiE

,1024 0.53 0.65 20.01
1025 0.52 0.67 0.23
1026 0.52 0.68 0.23
1027 0.52 0.68 0.23 where uhk

denotes the numerical solution obtained using
the mesh with parameter hk and i?iE is the energy norm
defined in Section 2. Then, we define the computed rate
of convergence to be p 5 (o5

i51 pk)/5. Based on the above
Obviously this problem has two boundary layers along method we also define the computed rates of convergence
x 5 1 and y 5 1. in the L2-norm

We first evaluate numerically the rates of convergence
of the method in different norms. The domain V is first

iuh 2 ui0 5 SE
V

uuh 2 uu2 dxD1/2

triangulated into 18 triangles with four randomly generated
interior nodes. We then smooth the mesh by moving each
interior node to the average of its neighboring nodes. The

and in the discrete maximum norm
maximum angle and the minimum angles in the resulting
mesh are respectively 95.18 and 31.68, and the mesh param- iuh 2 uiy,h 5 max

1#i#N
uui 2 u(xi)u.

eter h1 P Ad. This mesh is then refined repeatedly by adding

FIG. 4.2. Results for different values of «: (a) 0.1; (b) 0.01; (c) 0.001; (d) 0.0001.
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FIG. 4.3. Results obtained using the uniform mesh: (a) « 5 0.001; (b) « 5 0.0001.

The computed values of p for different values of « are perturbed advection–diffusion equation. The method is
based on a set of novel piecewise exponential basis func-listed in Table I. From the table we see that when « is

small, the computed rates of convergence in i?iE and i?i0 tions. The basis functions can not be expressed explicitly,
but the point values of each of them and its associatedare about 0.5 and 0.65, respectively. The former rate is in

agreement with the known result for the one-dimensional flux are determined by a set of two-point boundary value
problems. Numerical experiments were performed to vali-exponential fitting method and this rate of convergence

is optimal (cf., for example, [6]). The computed rate of date the usefulness of the method and the numerical results
showed that, when « ! h, the method is numerically stableconvergence in the maximum norm i?iy,h is positive except

for « 5 1023 and 1024. and converges to the exact solution in the energy norm at
a rate of h1/2.To demonstrate the numerical stability of the method,

we plot, in Fig. 4.2, the results of the test problem for
various « obtained using the triangular mesh depicted in ACKNOWLEDGMENT
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